GATA transcription factors: New key regulators in pancreas organogenesis

نویسنده

  • Kohtaro Minami
چکیده

Regenerative medicine is a promising therapeutic option for the treatment of type 1 diabetic patients with absolute insulin deficiency. For developing such a therapy, understanding how the pancreas is formed during embryogenesis is a critical issue. Organogenesis is the process of formation of organs through differentiation of cells in the embryonic germ layers, and it totally depends on the functions of a special set of transcription factors that are specific for each organ. Numerous transcription factors are known to be involved in organogenesis of the pancreas. Among these factors, pancreas/duodenum homeobox protein 1 (PDX1) has been considered a key regulatory transcription factors in pancreas development. The importance of PDX1 is evidenced by the findings that Pdx1-deficient mice show a severe impairment of pancreas development despite the presence of a pancreatic bud, and that deletion of a single nucleotide in the PDX1 coding sequence results in pancreatic agenesis in humans. Furthermore, in mice, along with PDX1, other transcription factors, such as pancreas transcription factor 1A (PTF1A) and hepatocyte nuclear factor 1B (HNF1B), are essential for formation of the pancreas. Mutations in PTF1A and HNF1B are also associated with pancreatic agenesis or hypoplasia in humans, showing that humans and mice share the fundamental mechanism of pancreas development. Recently, new molecules have been added to the list of transcription factors that participate in pancreas development. Lango Allen et al. examined 27 individuals with pancreatic agenesis, which was defined as neonatal diabetes requiring insulin treatment and exocrine pancreatic insufficiency requiring enzyme replacement therapy. Of these 27, only one individual had a homozygous mutation in the PTF1A splice site, and none of the individuals in the cohort had mutations in PDX1. The exome sequencing technique showed that 15 of the 27 individuals had spontaneous heterozygous loss-of-function mutations in the gene encoding the zinc-finger transcription factor, GATA6. The GATA family of transcription factors comprises six members that share a common deoxyribonucleic acid-binding motif of two tandem zinc-finger domains recognizing the consensus sequence A/TGATA-A/G. Among the GATA transcription factors, GATA1, GATA2 and GATA3 are expressed preferentially in hematopoietic cells, and are involved in cell proliferation and differentiation during hematopoiesis. In contrast, GATA4, GATA5 and GATA6 play important roles in specification and differentiation of tissues derived from the mesoderm and endoderm. Furthermore, GATA4 and GATA6 are expressed in the embryonic mouse pancreas. However, as Gata4and Gata6-null mice are embryonic lethal, the specific roles of these GATA transcription factors in development of the pancreas have not been elucidated. Recently, the roles of Gata4 and Gata6 in the development of the pancreas were investigated in two different studies. Carrasco et al. and Xuan et al. both used the Cre/loxP-based recombination technology to conditionally inactivate Gata4 and Gata6 genes within the pancreas. In both studies, mice carrying a floxed allele of Gata4 or Gata6 were crossbred with transgenic mice expressing Cre recombinase under the control of the Pdx1 promoter to knockout these genes specifically from the pancreas. Unlike in humans, single inactivation of either gene did not affect pancreas formation markedly, suggesting functional redundancy between these transcription factors in mice. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas resulted in pancreatic agenesis, hyperglycemia and early death after birth. Such abnormalities in the doublemutant mice are a result of the loss of the proliferation ability of the pancreatic progenitors, defects in branching morphogenesis and failure of progenitor cell differentiation. Similar to the results in Pdx1-deficient mice, the pancreatic bud was formed in the Gata4/Gata6 doublemutant mice, suggesting that the GATA transcription factors function after pancreas specification. Notably, in both studies, inactivation of Gata4 and Gata6 was achieved through Pdx1 promoter-driven expression of Cre recombinase, which ensure that the Gata genes can be removed only after initiation of the pancreatic developmental program. In that case, the roles of GATA transcription factors in the early stages of pancreas formation cannot be elucidated. Xuan et al. overcame this problem by using the forkhead box protein a3 (Foxa3)-Cre mice line, which is generated using the yeast artificial chromosome transgenic technique. Because Foxa3 is one of the few genes expressed early in the endoderm, but not in other tissues, Gata genes in the endoderm can be deleted before the appearance of the pancreas through crossbreeding Gata4; Gata6 mice with Foxa3-Cre mice. In the resulting mice, the pancreatic bud was formed despite the absence of the Gata genes in early endoderm. These findings show that the GATA transcription factors are dispensable for pancreas specification and bud outgrowth, but have functions in pancreatic progenitor cells (Figure 1). During normal pancreas development, the pancreatic epithelium forms a branched structure, in which the tips contain carboxypeptidase A1-positive *Corresponding author. Kohtaro Minami Tel.: +81-78-304-6046 Fax: +81-78-304-6057 E-mail address: [email protected] Received 28 February 2013; revised 5 March 2013; accepted 5 March 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GATA believe it: new essential regulators of pancreas development.

Understanding the transcriptional mechanisms that underlie pancreas formation is central to the efforts to develop novel regenerative therapies for type 1 diabetes. Recently, mutations in the transcription factor GATA6 were unexpectedly shown to be the most common cause of human pancreas agenesis. In this issue of the JCI, Carrasco et al. and Xuan et al. investigate the role of Gata6 and its pa...

متن کامل

GATA4 and GATA6 control mouse pancreas organogenesis.

Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, dou...

متن کامل

Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all ...

متن کامل

A Drosophila GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body.

We have identified a Drosophila transcription factor that binds a sequence element found in the larval promoters of all known alcohol dehydrogenase (Adh) genes. DNA sequence analysis of cDNA clones encoding this protein, box A-binding factor (ABF), reveals that it is a member of the GATA family of transcriptional regulatory factors. ABF-binding sites within the D. mulleri and D. melanogaster la...

متن کامل

The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors.

The tissue-restricted GATA-4 transcription factor and Nkx2-5 homeodomain protein are two early markers of precardiac cells. Both are essential for heart formation, but neither can initiate cardiogenesis. Overexpression of GATA-4 or Nkx2-5 enhances cardiac development in committed precursors, suggesting each interacts with a cardiac cofactor. We tested whether GATA-4 and Nkx2-5 are cofactors for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013